t-Copula generation for control variates

نویسندگان

  • Wolfgang Hörmann
  • Halis Sak
چکیده

The standard method for generating multi-t vectors is simple and convenient but it has the disadvantage that the generated multi-normal and multi-t vectors are not similar. For t-copula models this destroys much of the variance reduction when using the result of the multinormal model as external control variate. Therefore we develop a new generation method for multi-t vectors. It is based on the polar method and numerical inversion, and generates multi-normal and multi-t vectors that are very similar. Numerical experiments with simple functions of the weighted sum of t-copula vectors and with pricing European Basket options with a t-copula model confirm that the obtained variance reduction factors of the new method are high; 2 to 100 times higher than when using the standard generation method. ∗Department of Industrial Engineering, Boğaziçi University, 34342 Bebek-İstanbul, Turkey. Email:[email protected] †Department of Statistics and Mathematics, WU (Vienna University of Economics and Business), Augasse 2-6, A-1090 Wien, Austria. Email:[email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Copulas for Financial Modeling

Although the copula literature has many instances of bivariate copulas, once more than two variates are correl ated, the choice of copulas often comes down to selection of the degrees-of-freedom parameter in the t-copula. In search for a wider selection of multivariate copulas we review a generalization of the t-copula and some copulas defined by Harry Joe. Generalizing the t-copula gives more ...

متن کامل

The IUFP Algorithm for Generating Simulation Heart

In all systems simulation, random variates are considered as a main factor and based of simulation heart. Actually, randomization is inducted by random variates in the simulation. Due to the importance of such a problem, a new method for generation of random variates from continuous distributions is presented in this paper. The proposed algorithm, called uniform fractional part (UFP) is simpler...

متن کامل

Reducing the Variance of Likelihood Ratio Greeks in Monte Carlo REDUCING THE VARIANCE OF LIKELIHOOD RATIO GREEKS IN MONTE CARLO

We investigate the use of Antithetic Variables, Control Variates and Importance Sampling to reduce the statistical errors of option sensitivities calculated with the Likelihood Ratio Method in Monte Carlo. We show how Antithetic Variables solve the well-known problem of the divergence of the variance of Delta for short maturities and small volatilities. With numerical examples within a Gaussian...

متن کامل

Sampling from Archimedean Copulas

We develop sampling algorithms for multivariate Archimedean copulas. For exchangeable copulas, where there is only one generating function, we first analyse the distribution of the copula itself, deriving a number of integral representations and a generating function representation. One of the integral representations is related, by a form of convolution, to the distribution whose Laplace trans...

متن کامل

Adaptive Monte Carlo variance reduction for Lévy processes with two-time-scale stochastic approximation

We propose an approach to a two-fold optimal parameter search for a combined variance reduction technique of the control variates and the important sampling in a suitable pure-jump Lévy process framework. The parameter search procedure is based on the two-time-scale stochastic approximation algorithm with equilibrated control variates component and with quasi-static importance sampling one. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2010